MUSIC PolII ChIP-Seq Peaks Track Settings
 
modENCODE RNA Polymerase ChIP-Seq Peaks Identified by MUSIC   (All ChIP Seq Tracks)

Display mode:       Reset to defaults   

Minimum Indicates how dark the peak will be displayed in the browser (0-1000): (0 to 1000)


Display data as a density graph:
Select subtracks by stagegroup: (help)
  StageGroup Embryo  Larva  Pupa 
Select subtracks further by: (select multiple items - help)

List subtracks: only selected/visible    all    ()  
 
hide
 Configure
 Embryos, 4-8 hr MUSIC Peaks  modENCODE RNA PolII MUSIC Peaks for 4-8 hr Embryos   Schema 
 
hide
 Configure
 Embryos, 8-12 hr MUSIC Peaks  modENCODE RNA PolII MUSIC Peaks for 8-12 hr Embryos   Schema 
 
hide
 Configure
 Embryos, 12-16 hr MUSIC Peaks  modENCODE RNA PolII MUSIC Peaks for 12-16 hr Embryos   Schema 
 
hide
 Configure
 Embryos, 16-20 hr MUSIC Peaks  modENCODE RNA PolII MUSIC Peaks for 16-20 hr Embryos   Schema 
 
hide
 Configure
 Embryos, 20-24 hr MUSIC Peaks  modENCODE RNA PolII MUSIC Peaks for 20-24 hr Embryos   Schema 
 
hide
 Configure
 L1 MUSIC Peaks  modENCODE RNA PolII MUSIC Peaks for L1 Stage Larvae   Schema 
 
hide
 Configure
 L2 MUSIC Peaks  modENCODE RNA PolII MUSIC Peaks for L2 Stage Larvae   Schema 
 
hide
 Configure
 L3 MUSIC Peaks  modENCODE RNA PolII MUSIC Peaks for L3 Stage Larvae   Schema 
 
hide
 Configure
 Pupae MUSIC Peaks  modENCODE RNA PolII MUSIC Peaks for Pupae   Schema 
    

Description

These tracks show the regions in the genome that are significantly enriched in RNA Polymerase II ChIP-Seq reads at different developmental stages as determined by MUSIC.

The ChIP-Seq data were produced as part of the modENCODE project and were obtained from the NCBI Sequence Reads Archive under the accession number SRP001424.

Credits

Ho JW et al. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics. 2011 Feb 28;12:134.

Harmanci A, Rozowsky J, Gerstein M. MUSIC: identification of enriched regions in ChIP-Seq experiments using a mappability-corrected multiscale signal processing framework. Genome Biol. 2014;15(10):474.